Wang Long
王龙博士,英国伦敦大学学院(University College London)杰出(Distinction)硕士,香港城市大学博士。主要从事机器学习、数据挖掘和计算机视觉及其工业应用等方面的研究。现为IEEE、IEEE工业电子学会和中国计算机学会会员,中国计算机学会计算机视觉专委会委员,是2014年香港政府博士奖学金(Hong Kong PhD Fellowship)获得者。目前担任SCI期刊IEEE Access (IF: 4.098) 和Canadian Journal of Electrical and Computer Engineering (IF: 1.53) 的副主编,PLOS ONE (IF: 2.776) 的学术编辑、编委,Intelligent Automation & Soft Computing (IF: 0.79) 和Water (2.524) 的客座编辑。
1. L. Wang, Z. Zhang, and J. Chen, “Short-term Electricity Price Forecasting with Stacked Denoising Autoencoders,” IEEE Transactions on Power Systems, vol. 32, no. 4, July 2017. (IF: 6.807)
2. L. Wang, Z. Zhang, H. Long, J. Xu, and R. Liu, “Wind Turbine Gearbox Failure Identification with Deep Neural Networks,” IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1360-1368, June 2017. (IF: 7.377)
3. L. Wang and Z. Zhang, “Automatic Detection of Wind Turbine Blade Surface Cracks Based on UAV-taken Images,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, 2017. (IF: 7.503)
4. L. Wang, Z. Zhang, J. Xu, and R. Liu, “Wind Turbine Blade Breakage Monitoring with Deep Autoencoders,” IEEE Transactions on Smart Grid, vol. 9, no. 4, 2018. (IF: 10.486)
5. L. Wang, Z. Zhang, and X. Luo, “A Two-stage Data-driven Approach for Image based Wind Turbine Blade Crack Inspections,” IEEE-ASME Transactions on Mechatronics, vol. 24, no. 3, pp. 1271-1281, 2019. (IF: 4.943)
香港研究资助局主题研究计划“Safety, Reliability, and Disruption Management of High Speed Rail and Metro Systems”,参与
香港研究资助局杰出青年学者计划“Scheduling Power Production of Hybrid Power Systems with Data Mining and Computational Intelligence”,参与。
横向项目:
丹麦Dong Energy公司项目“Wind Turbine Generation Performance Monitoring with Representation Learning”,主持
2017年香港城市大学Outstanding Academic Performance Award
2014年香港政府博士奖学金(Hong Kong PhD Fellowship)
2014年香港城市大学Chow Yei Ching School of Graduate Studies Entrance Scholarships